Quantcast
Channel: Xilinx Wiki : Xilinx Wiki - all changes
Viewing all 11776 articles
Browse latest View live

xapp1306.png


Zynq UltraScale MPSoC Base TRD 2016.3 - Design Module 7

$
0
0
...
Copy the video_qt2 wrapper scripts from the pre-built dm9 SD card directory.
% cp $TRD_HOME/images/dm9/bin/run_video.sh $TRD_HOME/images/dm9/bin/video_qt2_wrap.sh $TRD_HOME/images/dm7/bin/
Copy the file autostart.sh from the pre-built dm9 SD card directory.
% cp $TRD_HOME/images/dm9/autostart.sh $TRD_HOME/images/dm7

Run Flow Tutorial
See here for board setup instructions.

Zynq UltraScale MPSoC Base TRD 2016.3 - Design Module 7

$
0
0
...
Copy the content of the generated sd_card folder to the dm7 SD card directory
% mkdir -p $TRD_HOME/images/dm7/bin
...
-rf filter2d/Release/sd_card $TRD_HOME/images/dm7$TRD_HOME/images/dm7/
Video Qt Application
This tutorial shows how to build the video library and the video Qt application.

FPGA Manager ZCU102

$
0
0
...
U-Boot
This scenario uses the same boot files created in the Linux use case, but the FPGA will be loaded in U-Boot, loading the binary file in the memory and using fpga framework.
...
mmc 0 0x4000000400000 design_1_wrapper.bit.bin
fpga load 0 0x4000000400000<bin size
{fpga_uboot.PNG}
Note: Check INIT_B led is turned green once the FPGA is loaded with the new firmware

xapp1305.png

xapp1305.jpg

xapp1306.png

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 2

$
0
0

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 3

$
0
0
Return to the Design Tutorials Overview.
Design Overview
This module demonstrates:
Boot RPU1 only
RPU1 OS: Bare-metal
Bare-metal performance monitor application
Read PS APM counters to measure DDR throughput and prints to UART1
{base-trd-2016-3-dm3-bd.png}
Design Components
This module requires the following components:
pmu_fw
petalinux_bsp
zynqmp_fsbl
perfapm-ctl + perfapm
Build Flow Tutorials
PMU Firmware
Please refer to design module 1 - PMU firmware for instructions or skip this step if you have built the PMU firmware in a previous module.
Perfapm-ctl Application
Create a new XSDK workspace.
% cd $TRD_HOME/rpu1/perfapm-server
% xsdk -workspace . &
Click 'Import Project' from the welcome screen, browse to the current working directory and make sure the perfapm, perfapm_bsp, perfapm-ctl and zcua02_base_trd_wrapper_hw_platform_0 projects are selected. Click Finish.
{perfapm-ctl.png}
Right-click on the perfapm-ctl project and select 'Build Project'.
Copy the generated perfapm-ctl executable into the PetaLinux BSP.
% cp perfapm-ctl/Debug/perfapm-ctl.elf $TRD_HOME/apu/petalinux_bsp/images/linux
PetaLinux BSP
This tutorial shows how to build the first stage bootloader (FSBL) and boot image using the PetaLinux build tool.
The petalinux-config step can be skipped if this was already done in a previous module.
% cd $TRD_HOME/apu/petalinux_bsp
% petalinux-config --get-hw-description=./hw-description --oldconfig
Build the FSBL. This step can be skipped if this was already done in a previous module.
petalinux-build -c bootloader
Create a boot image
% cd images/linux
% petalinux-package --boot --bif=dm3.bif --force
Copy the generated boot image to the dm3 SD card directory
% mkdir -p $TRD_HOME/images/dm3
% cp BOOT.BIN $TRD_HOME/images/dm3
Run Flow Tutorial
See here for board setup instructions.
Copy all the files from the $TRD_HOME/images/dm3 SD card directory to a FAT formatted SD card.
Power on the board to boot the images; make sure all power rail LEDs are lit green.
The user can now see FSBL and PMU-firmware prints on UART-0 and prints from baremetal Perfapm-ctl application can be viewed on UART-1 which is shown in the following picture:
{perfapm-client-test_console.png}

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 3

$
0
0

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 2

$
0
0

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 3

$
0
0

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 1

$
0
0

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 4

$
0
0
Return to the Design Tutorials Overview.
Design Overview
This module demonstrates:
Boot RPU1 from APU master via remoteproc
Inter Process Communication (IPC)
APU master: RPMsg
RPU1 remote: OpenAMP
RPU1 Bare-metal application (server)
Reads performance counters and sends to APU
APU Linux application (client)
Receives performance counters from RPU1 and prints to UART0
{base-trd-2016-3-dm4-bd.png}
Design Components
This module requires the following components:
pmu_fw
petalinux_bsp
zynqmp_fsbl
bl31
u-boot
kernel
device tree
rootfs
perfapm-server + perfapm
perfapm-client-test + perfapm-client
Build Flow Tutorials
PMU Firmware
Please refer to design module 1 - PMU firmware for instructions or skip this step if you have built the PMU firmware in a previous module.
Perfapm-server Applicationperfapm-server
The performance monitor server application perfapm-server is a bare-metal application that executes on RPU-1. The firmware binary is loaded by the APU master at the end of the Linux boot process. RPU-1 and APU establish a communication channel using the OpenAMP framework. RPU-1 gathers performance data like memory throughput from the PS AXI performance monitor (APM) units and sends it across to the APU where the data is received by the perfapm-client library and then visualized on a plotted graph.
Create a new XSDK workspace.
% cd $TRD_HOME/rpu1/perfapm-server
% xsdk -workspace . &
Click 'Import Project' from the welcome screen, browse to the current working directory and make sure the perfapm, perfapm-server, perfapm_bsp, and zcu102_base_trd_wrapper_hw_platform_0 projects are selected. Click 'Finish'.
{zcu102_base_trd_2016_1_perf_projects.jpg}
Right-click on the perfapm-server project and select 'Build Project'.
Copy the generated perfapm-server executable into the PetaLinux BSP.
% cp perfapm-server/Debug/perfapm-server.elf $TRD_HOME/apu/petalinux_bsp/components/apps/perfapm_server/data/
PetaLinux BSP
This tutorial shows how to build the Linux image and boot image using the PetaLinux build tool.
The petalinux-config step can be skipped if this was already done in a previous module
% cd $TRD_HOME/apu/petalinux_bsp
% petalinux-config --get-hw-description=./hw-description --oldconfig
Select the device-tree matching design module 4 and build all Linux image components. If you have run petalinux-build in a previous module, the build step will be incremental.
% cd subsystems/linux/configs/device-tree
% cp system-dm4.dts system-top.dts
% petalinux-build
% cd -
Create a boot image
% cd images/linux
% petalinux-package --boot --bif=dm4.bif --force
Copy the generated images to the dm4 SD card directory
% mkdir -p $TRD_HOME/images/dm4
% cp BOOT.BIN image.ub $TRD_HOME/images/dm4/
NOTE: Make sure to include autostart.sh file from DM-9 SD card directory in the DM-4 SD card directory which will insert "rpmsg_user_dev_driver" in the kernel-tree to create "rpmsg0" device-node.
Perfapm-client-test Application
The application receives performance counter values from RPU-1 and prints them to UART-0.
Create a new XSDK workspace.
% cd $TRD_HOME/apu/perfapm-client
% xsdk -workspace . &
Click 'Import Project' from the welcome screen, browse to the current working directory and make sure the perfapm-client and perfapm-client-test projects are selected. Click 'Finish'.
{perfapm-client-test.png}
Right-click on the perfapm-client-test project and select 'Build Project'.
Copy the generated perfapm-client-test executable to the dm4 SD card directory.
% mkdir -p $TRD_HOME/images/dm4/bin
% cp $TRD_HOME/apu/perfapm-client/perfapm-client-test/Debug/perfapm-client-test.elf $TRD_HOME/images/dm4/bin
Run Flow Tutorial
See here for board setup instructions.
Copy all the files from the $TRD_HOME/images/dm4 SD card directory to a FAT formatted SD card.
Power on the board to boot the images; make sure all power rail LEDs are lit green.
After Linux is booted, enter Username and Password as "root"
Run the perfapm-client-test application:
% perfapm-client-test.elf
Below is a screenshot of the application output on the serial console
{perfapm-client-test_console.png}

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 4

$
0
0

Zynq UltraScale MPSoC Base TRD 2016.3 - Design Module 4

$
0
0
...
% mkdir -p $TRD_HOME/images/dm4
% cp BOOT.BIN image.ub $TRD_HOME/images/dm4/
NOTE: Make sure to include autostart.shCopy the file autostart.sh from DM-9 SD card directory in the DM-4pre-built dm9 SD card directory which will insertdirectory.
% cp $TRD_HOME/images/dm9/autostart.sh $TRD_HOME/images/dm4
NOTE: The autostart.sh file inserts
"rpmsg_user_dev_driver" in
Perfapm-client-test Application
The application receives performance counter values from RPU-1 and prints them to UART-0.

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 4

$
0
0
...
% mkdir -p $TRD_HOME/images/dm4
% cp BOOT.BIN image.ub $TRD_HOME/images/dm4/
NOTE: Make sure to include autostart.shCopy the file autostart.sh from DM-9 SD card directory in the DM-4pre-built dm9 SD card directory which will insertdirectory.
% cp $TRD_HOME/images/dm9/autostart.sh $TRD_HOME/images/dm4
NOTE: The autostart.sh file inserts
"rpmsg_user_dev_driver" in
Perfapm-client-test Application
The application receives performance counter values from RPU-1 and prints them to UART-0.

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 5

$
0
0
Return to the Design Tutorials Overview.
Design Overview
This module shows how to build a Qt video application demonstrating the following features:
Display via PS DP (DRM framework)
Video capture from USB webcam or virtual video device (vivid) (V4L2 framework)
GUI overlay via GPU with OpenGL (using Qt framework)
{dm5.png}
Design Components
This module requires the following components:
zcu102_dp_only
pmu_fw
petalinux_bsp
zynqmp_fsbl
bl31
u-boot
kernel
device tree (system-dm5.dts)
rootfs
video_lib
video_qt2
Build Flow Tutorials
PL DP Only Design
This tutorial show how to build the DP only Vivado design that implements the minimum required to make DisplayPort work.
Create a Vivado project. Select 'es1' instead if you are targeting a rev D board with ES1 silicon.
% cd $TRD_HOME/pl/zcu102_dp_only
% vivado -s ./scripts/create_project.tcl -tclargs -platform zcu102 -silicon es2
Implement the design and generate a bitstream
{base-trd-2016-3-dm5-dp-only-bit.png}
Copy the generated bitstream to the PetaLinux directory or alternatively use the pre-built bit file that is already bundled with the PetaLinux BSP.
% cp -f project/zcu102_dp_only.runs/impl_1/zcu102_dp_only_wrapper.bit $TRD_HOME/apu/petalinux_bsp/images/linux
PMU Firmware
Please refer to design module 1 - PMU firmware for instructions or skip this step if you have built the PMU firmware in a previous module.
PetaLinux BSP
This tutorial shows how to build the Linux image and boot image using the PetaLinux build tool.
The petalinux-config step can be skipped if this was already done in a previous module.
% cd $TRD_HOME/apu/petalinux_bsp
% petalinux-config --get-hw-description=./hw-description --oldconfig
Select the device-tree matching design module 5 and build all Linux image components. If you have run petalinux-build in a previous module, the build step will be incremental.
% cd subsystems/linux/configs/device-tree
% cp system-dm5.dts system-top.dts
% petalinux-build
% cd -
Create a boot image.
% cd images/linux
% petalinux-package --boot --bif=dm5.bif --force
Copy the generated boot image and Linux image to the dm5 SD card directory.
% mkdir -p $TRD_HOME/images/dm5/bin
% cp BOOT.BIN image.ub $TRD_HOME/images/dm5
Copy the file autostart.sh from the pre-built dm9 SD card directory.
% cp $TRD_HOME/images/dm9/autostart.sh $TRD_HOME/images/dm5
Video Qt Application
This tutorial shows how to build the video library and the video Qt application.
Open the file $TRD_HOME/apu/video_app/video_qt2/video_qt2.pro with an editor and modify the highlighted lines as shown in the screenshot by adding the '#' symbol to comment those lines.
{base-trd-2016-3-dm5-video-qt-pro.png}
Set up the Qt environment and generate a Makefile for the Qt project. Make sure the TRD_HOME and PETALINUX environment variables are set before running this step.
% cd $TRD_HOME/apu/video_app/video_qt2
% source qmake_set_env.sh
Create a new XSDK workspace.
% cd ..
% xsdk -workspace . &
Click 'Import Project' from the welcome screen, browse to the current working directory and make sure both the video_lib and video_qt2 projects are selected. Click finish.
{base-trd-2016-3-dm5-xsdk-import.png}
Right-click the video_lib project and select 'C/C++ Build Settings'. Navigate to 'Symbols' and remove the 'WITH_SDSOC' symbol from the defined symbols panel by clicking the delete icon with the red X.
{base-trd-2016-3-dm5-video-lib-rm-sdsoc.png}
Right-click the video_qt project and click 'Build Project'.
{base-trd-2016-3-dm5-video-qt-build.png}
Copy the generated video_qt2 executable to the dm5 SD card directory.
% cp video_qt2/video_qt2 $TRD_HOME/images/dm5/bin/
Copy the video_qt2 wrapper scripts from the pre-built dm9 SD card directory.
% cp $TRD_HOME/images/dm9/bin/run_video.sh $TRD_HOME/images/dm9/bin/video_qt2_wrap.sh $TRD_HOME/images/dm5/bin/
Run Flow Tutorial
See here for board setup instructions.
Copy all the files from the $TRD_HOME/images/dm5 SD card directory to a FAT formatted SD card.
Power on the board to boot the images; make sure INIT_B, done and all power rail LEDs are lit green.
After ~30 seconds, the display will turn on and the application will start automatically, targeting the max supported resolution of the monitor (one of 3840x2160 or 1920x1080 or 1280x720).
Upon application exit, use the below login and password to log into the framebuffer or serial console:
root@Xilinx-ZCU102-2016_3 login: root
password: root
The SD card file system is mounted at /media/card
To re-start the TRD application type run_video.sh
The user can now control the application from the GUI's control bar (bottom) displayed on the monitor.
{video_qt2_dm5.jpg}
The following video sources are available:
Virtual Video Device (VIVID): emulates a USB webcam purely in software
USB Webcam (UVC): using the universla video class driver
The video info panel (top left) shows essential settings/statistics.
The CPU utilization graph (top right) shows CPU load for each of the four A53 cores.

Zynq UltraScale MPSoC Base TRD 2016.4 - Design Module 5

$
0
0
...
Video Qt Application
This tutorial shows how to build the video library and the video Qt application.
Open the file $TRD_HOME/apu/video_app/video_qt2/video_qt2.pro with an editor and modify the highlighted lines as shown in the screenshot by adding the '#' symbol to comment those lines.
{base-trd-2016-3-dm5-video-qt-pro.png}

Set up the Qt environment and generate a Makefile for the Qt project. Make sure the TRD_HOME and PETALINUX environment variables are set before running this step.
% cd $TRD_HOME/apu/video_app/video_qt2
% source qmake_set_env.sh
% qmake video_qt2-dm5.pro -r -spec linux-oe-g++
Create a new XSDK workspace.
% cd ..

Zynq UltraScale MPSoC Base TRD 2016.4

$
0
0
{under.jpg}
1 Revision History
...
complements the 2016.32016.4 version of
Change Log:
...
versions to 2016.32016.3, except Petalinux
Add support for ZCU102 rev 1.0 board with ES2 silicon
Split reference design into 9 design modules with dedicated tutorials
...
Required:
Linux host machine for all tool flow tutorials (see here for detailed OS requirements)
...
Environment version 2016.32016.4
Xilinx Software
...
(XSDK) version 2016.32016.4
PetaLinux Tools version 2016.3
Git distributed version control system
...
The following tutorials assume that the $TRD_HOME environment variable has been set as below.
For rev 1.0 / ES2:
% export TRD_HOME=</path/to/downloaded/zip-file>/rdf0421-zcu102-base-trd-2016-3TRD_HOME=</path/to/downloaded/zip-file>/rdf0421-zcu102-base-trd-2016-4
For rev D / ES1:
% export TRD_HOME=</path/to/downloaded/zip-file>/zcu102-base-trd-2016-3TRD_HOME=</path/to/downloaded/zip-file>/zcu102-base-trd-2016-4
For some modules, the $PETALINUX environment variables needs to be set as well. This is done automatically when you source the PetaLinux settings.sh script (see PetaLinux installation guide).
For the individual tutorials, follow the links below:
Viewing all 11776 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>